Center for Drug Evaluation and Research (CDER) Perspective

National Center for Toxicological Research (NCTR) Scientific Advisory Board

Tim McGovern, PhD
Associate Director, Pharmacology/Toxicology
Office of Drug Evaluation, Office of New Drugs

David Strauss, MD, PhD
Director, Division of Applied Regulatory Science (Acting)
Office of Clinical Pharmacology,
Office of Translational Sciences
CDER-Office of New Drugs Pharm/Tox
Staff: Role in Regulatory Drug Development

NCTR Science Advisory Board
November 2016

Tim McGovern, PhD
ODE Associate Director, Pharmacology/Toxicology
Office of New Drugs, CDER, FDA
CDER Organizational Chart
(focus on pharm/tox group)
OND Pharm/Tox: Place in Regulatory Drug Development
Use of Pharm/Tox data

- Identify reasonably safe dose range to explore in clinical trials

- Identify clinical monitoring needed beyond ‘standard’ safety assessments

- Identify or predict risks that are not captured in human trials (e.g., carcinogenicity, teratogenicity)
What is the intent and use of pharm/tox in NEW drug development?

- Establish pharmacological properties of compound

- Understand toxicological profile (target organs, exposure/response, reversibility)

Is submitted data sufficient to conclude that proposed clinical investigation is reasonably safe?
Scope of “complete” Pharm/Tox information

• Pharmacology
 o Cellular & Molecular mechanism of action, Specificity
 o ‘Proof of Concept’ in vitro/in vivo studies
 o Safety Pharmacology (CNS, Respiratory, Cardiovascular

• Pharmacokinetics
 ADME: Absorption, Distribution, Metabolism, & Excretion
 o From animal species & human metabolism

• General Toxicology
 o Two species, 1 rodent, 1 non-rodent
 o In-life & necropsy evaluations
 o Acute & chronic administration of drug + recovery periods
Scope of “complete” Pharm/Tox information

• Genetic Toxicology
 In vitro & in vivo assessments

• Carcinogenicity
 e.g., from weight-of-evidence paper to 2 yr rodent studies

• Reproductive Toxicology
 Fertility
 Teratogenicity & embryofetal development
 Peri- & post-natal development

• Product specific assessments
 e.g., Juvenile animal studies, pancreatic safety studies, etc…
Complete pharm/tox information not expected immediately

• Timing depends on scope of proposed clinical trial & type of product
 o ICH M3(R2): Small molecules
 o ICH S6: Biologics
 o ICH S9: Anti-Cancer Pharmaceuticals

• All pharm/tox topics considered important safety issues

• Expectation is that all nonclinical topics be addressed, appropriate for the scope of the clinical program
CDER/OND Pharm/Tox & NCTR Connections: Examples

CDER
Center for Drug Evaluation & Research

OND
Office of New Drugs

~15 Review Divisions, multi-disciplinary by Therapeutic Area
~5 to 30 P/T per Division, ~185 reviewers

DNDP
Div. NonPrescription Drug Products

DAAP
Div. Anesthesia, Analgesia, Addiction

Oxybenzene Reprotox

Triclosan Carci

Pediatric Anesthetics CNS Safety
Pharm/Tox & NCTR Connections

• ~ 70 current CDER-NCTR collaborations
• Some current collaborations include:
 – *Assess critical gaps in safety assessment* of widely used and/or widely available drug substances
 • Increasingly important collaboration with innovations to Nonprescription Drug Products monograph review process
 – *Laboratory research; Review of submissions*
 – *Serve as co-PI on various projects* including research on
 • *drug-induced cardiotoxicity*
 • *Genotoxicity*
 – *On-site laboratory training in neurotoxicity methods*
Potential collaboration on nonclinical programs for NEW drug approvals?

How do we better extrapolate relevance of nonclinical toxicology findings to humans, and translate those findings to human risk?
- Genetic toxicology
- Carcinogenicity
- Reproduction & Development

How do we better identify and evaluate alternatives/ refinements to current testing strategies intended to improve prediction of human risk?
- In vitro developmental assays (e.g. mEST, zebrafish)
- Microphysiological approaches (tissue/organ/human on a chip)
Applied Regulatory Science, Clinical Pharmacology and Translational Sciences Perspective

NCTR Science Advisory Board
November 2016

David Strauss, MD, PhD
Director, Division of Applied Regulatory Science (Acting)
Senior Advisor, Translational & Experimental Medicine
Office of Clinical Pharmacology, Office of Translational Sciences
Center for Drug Evaluation and Research
What We Do ...

- **Office of Translational Sciences**
 - Promote innovation in drug regulatory review
 - Assure the validity of clinical trial design and analysis
 - Develop and apply quantitative approaches
 - Promote scientific collaboration
 - Ensure alignment of CDER research with CDER goals

- **Office of Clinical Pharmacology**
 - Evaluate pharmacokinetics and pharmacodynamics
 - Understand inter-patient variabilities
 - Optimize dose and dose regimen to balance benefit and risk
 - Conduct research to advance clinical pharmacology and better evaluate benefit and risk
Division of Applied Regulatory Science (DARS)

Vision

• To move new science into the CDER review process and close the gap between scientific innovation and product review

What does DARS do?

• Perform mission-critical applied research to develop and evaluate tools, standards and approaches to assess the safety, efficacy, quality and performance of drugs

• Perform expert regulatory review consultations for immediate regulatory needs, such as mechanistic evaluation and biological plausibility of new safety signals
DARS Priorities

- Translational regulatory science
- Collaboration and interdisciplinary team approaches
- Implementation of new regulatory review methods and programs

Broad, multidisciplinary expertise:

- Pharmacologists, toxicologists, physiologists, pharmacokineticists
- Physicians, veterinarians, pharmacists
- Immunologists, microbiologists, molecular/cell biologists
- Biochemists, inorganic chemists, pharmaceutical scientists
- Computational biologists, engineers, bio-physicists, mathematicians
Highlighted Applied Research and Regulatory Review Areas

1. Modernizing toxicology/safety pharmacology with humanized assays and genomics
 - Comprehensive in vitro Proarrhythmia Assay (CiPA) initiative
 - Humanized mouse models (immune and liver)
 - Genomic (microRNA) biomarkers for tissue injury

2. Bioanalytical, pharmacokinetics and drug-drug interactions

3. Informatics tools for mechanistic safety and regulatory review consults
 - Chemical informatics
 - Biomedical informatics
 - Mechanistic safety and pharmacology consults
Comprehensive *in vitro* Proarrythmia Assay (CiPA): Four Components

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>![Graphs](modified from Hoekstra et al., 2012)</td>
<td>![Graphs](modified from Hoekstra et al., 2012)</td>
<td>![Electrophysiology Image](modified from Hoekstra et al., 2012)</td>
<td>![Electrophysiology Image](modified from Hoekstra et al., 2012)</td>
</tr>
</tbody>
</table>

Goal: Develop a new in vitro paradigm for cardiac safety evaluation of new drugs that provides a more accurate and comprehensive mechanistic-based assessment of proarrhythmic potential

- DARS is leading applied research across all four components to develop and validate this novel regulatory paradigm in collaboration with all major global drug regulatory agencies, multiple public-private partnerships, industry and academia
CDER-CDRH-NCTR Collaboration

Comprehensive Translational Assessment of Human Induced Pluripotent Stem Cell Derived Cardiomyocytes for Evaluating Drug-Induced Arrhythmias

Ksenia Blinova, Jayna Stohlman, Jose Vicente, Dulciana Chan, Lars Johannesen, Maria P. Hortigon-Vinagre, Victor Zamora, Godfrey Smith, William J. Crumb, Li Pang, Beverly Lyn-Cook, James Ross, Mathew Brock, Stacie Chvatal, Daniel Millard, Loriano Galeotti, Norman Stockbridge, David G. Strauss

Example of Optical Imaging with Voltage Sensitive Dyes

![Diagram showing example of optical imaging with voltage sensitive dyes.](image)
CiPA Progress & Expected Outcomes

• Standardized, mechanistic-based studies that can be applied early in drug development to aid in compound selection
• Drugs that may be dropped from development under current paradigm could have a clearer path to advance
• QT prolonging drugs on the market that are not proarrhythmic could have labeling updated to reflect this
• Model for mechanistic-based approaches to be applied to other drug safety areas
• Qualification studies to be completed and presented to International Conference on Harmonization (ICH) by December 2017
Humanized Mouse Models

- DARS utilizes advanced ‘humanized’ mouse models that have either a human immune system, a human liver or both
- These models serve to better understand safety concerns for both small and large molecule drug products
- Are being used to assess biosimilar vs. originator biologics, toxicity, hypersensitivity, drug metabolism and drug-induced liver injury

Slide adapted from Kristina Howard, FDA/DARS

http://www.fda.gov/Drugs/ScienceResearch/ucm294603.htm#humanized
Novel MicroRNA Biomarkers: Application Pancreatic Injury

• Traditional serum biomarkers (amylase, lipase) of pancreatic injury have less than ideal sensitivity and specificity

• MicroRNAs (miRNAs) are short noncoding RNA molecules that bind to target mRNA causing gene silencing

• Tissue injury can rapidly release tissue-specific miRNAs that are very stable in biofluids = Biomarkers!

• Series of DARS studies in mice, rats and dogs
 – Equivalent or better sensitivity, more specific, larger range of response

Slide adapted from Rodney Rouse & Karol Thompson, FDA/DARS
http://www.fda.gov/Drugs/ScienceResearch/ucm294603.htm#druginduced
Chemical Informatics Research

• DARS Chemical Informatics Program performs research to
 – Create chemical structure-linked toxicological and clinical effect databases
 – Develop rules for quantifying in vitro, animal and human endpoint data
 – Develop prediction models through collaborations

Ongoing Research Projects
 – Develop (quantitative) structure activity relationship ((Q)SAR) models for bacterial mutation compliant with ICH M7
 – Enhance (Q)SAR models for carcinogenicity and ICH S2 genetic toxicity endpoints

Emerging areas
 – Evaluate (Q)SAR modeling for speeding development of drugs for severely debilitating and life threatening diseases

Slide adapted from Naomi Kruhlak, FDA/DARS
http://www.fda.gov/Drugs/ScienceResearch/ucm294603.htm#Computational
Bioinformatics Research

• Clinical trials do not identify many serious adverse events that ultimately lead to safety label changes.

• DARS performs research to advance and validate methods in biomedical informatics to enhance pharmaco-vigilance and inform drug labeling.

• DARS is evaluating the performance of software that generates target adverse event profiles; the set of adverse events associated with a pharmacological target.

Slide adapted from Keith Burkhart, FDA/DARS
Chemical Informatics Consults

- In FY16, performed 225 (Q)SAR consults for 492 drugs, drug impurities, metabolites and packaging leachables
 - Bacterial mutagenicity models in high demand due to ICH M7
 - Additional nonclinical (carcinogenicity, mutation, genetic toxicity, reproductive/developmental toxicity, phospholipidosis) and clinical (liver, cardiovascular, kidney/bladder effects) models
 - Consult distribution: 20% new drug products, 80% generics

Biomedical Informatics and General Division Consults

- Consults start with review of existing data and literature, incorporate biomedical and chemical informatics analyses and sometimes extend to laboratory investigations
Moving Forward ...

• We want to modernize pharmacology and toxicology to advance drug development!

• We want to move new science into the regulatory review process!

• Opportunities for advancing CDER-NCTR collaborations
 – Collaborate on research with experimental or computational work occurring at NCTR and CDER, tackling complementary aspects of a project
 – Further engage CDER scientists
 – Validate and translate laboratory and computational models into the CDER review process